
On the design of a Formal Debugger for System Architecture

Bruno Monsuez
ENSTA - UEI
32 bd Victor

F 75739 Paris Cedex 15
email: bruno.monsuez@ensta.fr

Franck Védrine
CEA, LIST

Software Reliability Lab, Boı̂te 65
CEA Saclay, Gif sur Yvette,

F-91191 FRANCE
email: franck.vedrine@cea.fr

Nicolas Vallée
ENSTA - UEI
32 bd Victor

F 75739 Paris Cedex 15
email: nicolas.vallee@ensta.fr

Abstract: System level design helps alleviate much of the burden of usual RTL level design except verification.
Functional verification of system architecture may first seem easier at the higher level of abstraction. In fact,
insight on fundamental aspects of semantics of system leveldesign and impact on lower levels of abstraction
makes it much harder. Formal verification has received till now little attention for functional verification of system
architecture. However, formal verification may provide great benefits to the system level designers. In this paper,
starting from the experiments we have conducted with analyzing and verifying SystemC models using formal
verification techniques, we describe what a potentially very useful approach to build a formal debugger to verify
system architectures designed using a modern system model language like SystemC or SystemVerilog.

Key–Words:Formal debugger, SystemC, Hypergraphs, Abstract interpretation

1 Introduction
Functional verification is widely recognized as the
major bottleneck of the hardware design industry.
The ever-growing demand for performance and time
to market combined with the exponential increase in
hardware size as well as in system complexity cause
the verification task to become increasingly difficult.
Leading chip and system companies with almost infi-
nite resources still don’t arrive at bug free designs in a
short and predictable design cycle.

Functional verification of a hardware design after
completion of the design is extremely costly and can-
not be achieved in a limited time. The way that is cur-
rently explored by all the major chip and system com-
panies is first to develop and test an abstract model
of the system architecture, for instance a transactional
level model, and test the functionalities, reliabilities
and performances if such a model allows it.

System modeling seems the most natural way to
go to ensure an efficient and functional system archi-
tecture. Current development in the HDL language
arena emphasizes on system modeling languages like
SystemC[1], SpecC[2]With the introduction of the
new system modeling languages, a set of new tools
have been also introduced for testing and making sys-
tem simulation less time consuming,. For instance,
special verification languages like Vera[3], Verisity’s
[4] and Cadence’s SystemC Verification Library [5],
have been developed to support automatic stimulus
generation. What the industry expects from system
modeling and extensive testing of system architecture

is to uncover bugs early and to achieve high quality of
the design.

However, verifying the system architecture at a
transactional level [10] requires a lot of computation
time and a good expertise in their design. The com-
plex use of the powerful verification languages re-
quires a high level of expertise to be profitable.

Formal verification has already been successfully
used for proving and verifying hardware design[6][7].
However, current available tools cannot be used to
achieve functional system architecture. Since system
level verification is quite new and till now, there was
little industrial experience with functional verification
of system models at transactional level, it was first dif-
ficult to determine if formal verification technologies
could be successfully used for their verification and
secondly there was not enough feedback to identify
the requirements that such a tool should fulfill.

For three years, we cooperate with STMicroelec-
tronics to introduce and evaluate the benefit of formal
verification for SystemC model verification. We suc-
cessfully experiment with Bus Cycle Accurate design
as well as with transactional level models.

In this paper, starting from our experience, we ex-
pose what are the expectations of a system designer
with respect to a debugging tool for system level ar-
chitecture that is based on formal methods, what are
the benefits of using such a debugging tool during the
design of a system architecture and we conclude with
a quick overview of the architecture of a formal sys-
tem level debugging tool that has been labeled by and



received support from RNTL[8] and that will offer the
previous identified capabilities.

2 Formal Verification of System Architecture

Functional verification of system architectures and
unitary component verification have little in common.
The first operates at the very first design stage. IPs are
described at an abstract level, precise information like
time and clock are missing, the designer concentrates
on computational and transactional behaviors of the
individual components.

The goal of this design state is to verify that the
block architecture as well as the communication or in-
teraction between the identified components may be
functional. There is at this stage no guarantee that
the final implementation of the low-level conform-
ing components will be bug-free. However, if the
behavior of the low-level components doesn’t con-
form to the behavior of the abstract components, it is
quite sure that the required functionalities and perfor-
mances wouldn’t be matched by the implementation.

Successfully tested and verified architectures pro-
vide “golden models”. Implemented components
should adhere to the abstract behavior of the abstract
components used in the system architecture model.

2.1 What can we expect from a formal debugger ?

To deliver meaningful results, a formal debugger must
allow the designer to verify and to extract properties
about: (1) the abstract behavior of the components, (2)
the protocols of the global system as well as the pro-
tocols specific to an individual component, (3) the in-
variants on the global system or on a group of individ-
ual components, (4) the simulation/execution traces,
(5) the data and values that are sent or received by the
various components during simulation.

To succeed, a formal debugger must provide sup-
port: (1) for defining or extracting assertions or as-
sumptions, (2) case-reasoning, (3) formal reasoning,
(4) as well as static analysis.

2.2 What are the used verification technologies ?

The current methodologies used by architecture veri-
fication largely depend on simulation. Industrial solu-
tions like [9] automatically generate precise and com-
plete testbenchs. The testbenchs and their associ-
ated oracles supply assumptions and hypotheses that
the implementation of the components should verify.
Simulation-based techniques also supply basic func-
tionalities to find the origins of errors and to correct
them through debugging.

Formal methods can deliver conformance verdict.
Despite recent progress, they’re still limited to small

design blocks or small systems. Theorem proving are
used to verify some specific parts of processors in-
volving complex and arbitrary reasoning based on in-
duction proofs [12]. Model checking is adequate for
small designs (up to 500.000 gates) when the inherent
model is finite and description and specifications may
be expressed within the logic supported by the model
checker. Property inference defines purpose-oriented
tools with efficient verification on large design. How-
ever, the inferred properties are very specific. Abstract
interpretation automatically finds semantic properties
on the system but may loose a lot of precisions if the
abstraction domains aren’t adequate.

All those formal methods complement them-
selves: theorem provers assist the designer in synthe-
sizing hypotheses and assumptions that should be ver-
ified. Abstract interpretation and property inference
can automatically infer additional and pertinent prop-
erties. In some cases, the abstract interpretation may
also deliver a conformance verdict. Finally model
checking can deliver a conformance verdict: either the
system verifies the assumption or the system violates
one assumption and the model checker gives an exe-
cution trace that leads to the violated assumption.

Distinguing the different technologies matters
when we know how inferring and extracting complex
assumptions or hypotheses on real systems is.

3 Designing a formal debugger

Using “static analysis” in a formal debugging isn’t
new. Bourdoncle for instance has developed the “syn-
tox” tool[18] based on abstract interpretation to ana-
lyze and debug programs written in “pascal”.

However implementing tools for the formal debug
of a high abstraction design IP is as much a technical
as a technological challenge because of (1) the need to
have a tool usable by everyone who is not a specialist
in formal verification, (2) the need to have a very fast
tool that still provide valuable information.

The classical approach, called “design and de-
bug” cannot be used in the case of exhaustive ver-
ification. Implementing the components, verifying
the components, correcting and verifying them again
make verification a time consuming job. If we add the
fact that the currently available tools require a high ex-
pertise in dynamic or formal verification, this process
makes the use of such tools unsuitable for the indus-
trial chip designer. Therefore, we decided to take a
different approach, we integrate the debug/verification
process during all the development stage of the archi-
tecture, providing a platform that is similar to a stan-
dard debugger but that manipulates “formal proper-
ties”. We called this approach “debug as design”.



3.1 A common debug platform
A full automatic analyzer or a push-button analyzer
will only do a few incomplete verifications. Too many
warnings may be also produced and it will be very
difficult to figure the origin of each warning, prevent-
ing any certification. The analyzer must be associated
with a formal execution tool and a property extraction
tool driven by the user. These tools must be capable
of pointing out any error level to the user as well as
distinguing sure errors and potential errors.

Moreover, we list in the following standard re-
quests that the user may issue to explore the results
of the analysis.

• the user may request an “erroneous scenario” to
find the origin of a possible error, or a “custom
scenario” to ensure the good execution of the
process and determine the invariants.

• computes and browses all scenarios that lead to a
control point, starting from this control point.

• asks for the value of a given register at a given
time or asks for the value boundaries of a given
register during a given period of time,

• asks simple questions like: is the value of one
variable higher than the value of another one ?

To provide a viable platform that allows the devel-
opment and the use of formal verification during the
design of system architecture at transactional level, we
identify the additional four key requirements:
Modularity: Formal verification of system architec-
ture must support the analysis of a group of compo-
nents in the absence of the non-available components.
It must also support replacing a component without
having to analyze the complete system again.

For instance, a designer should be able to start
the verification process of an MPSoc design with for
instance two processors and a very abstract descrip-
tion of the components that ensure cache coherency
of both processor’s cache memory. In a second phase,
he will certainly connect both processors to an ex-
ternal bus that communicates with a shared memory.
If formal verification supports modular and context-
independent analysis, the designer will be able to start
the verification process with the very simple architec-
ture where the two processors and the components that
ensure cache coherency are defined. Designer can en-
sure that the basic architecture is correct and then adds
new modules or replaces current modules with new
ones without having to recompute all properties in-
ferred or verified by the previous model.
Heterogeneous analyses:When designing the sys-
tem architecture, the system designers are interested
in validating key aspects of its system architecture.
According to his work, he will use heterogeneous ab-
straction levels; some IPs will be pure transactional

models, some other IPs mixing transactional levels
and Bit & Cycle Accurate models and finally some IPs
pure BCA models. For a given abstraction level, there
is also miscellaneous aspects that may be modeled.
For instance, exploring the transactional level model-
ing, Cai & Gajski [10] distinguishes between spec-
ification, component-assembly, bus-arbitration, bus-
functional and cycle-accurate computation models.

Finally, properties to be analyzed such as timing,
protocol, data flow also strongly depend on the ab-
straction level of the architecture components. A for-
mal verification platform may be able to handle all the
abstraction levels as well as the different notions and
properties that the system designer wants to model.
A verification at low cost: Everyone agrees to say
that verification consumes 80% of conception time.
The implementation of architectures, environment for
high-level test as well as formal verification of high-
level IP components already consume over 25% of to-
tal time for the verification process of a component.
The more features and possibilities the systems offer,
the higher the conception time ratio will be. It is im-
portant to obtain a low cost architecture implementa-
tion. Since system architecture modelization is a dy-
namical part of the development and is open to a fast
evolution, verification must not be an impediment to
the flexibility of this stage.
Assembling the technologies:A final challenge but
not the more difficult one, is to assemble the most per-
tinent technologies in development, verification and
static analysis. In section 2.2, we point out theorem
proving, model checking, property inference, abstract
interpretation, simulation among others. Those tech-
nologies successfully and efficiently apply to a given
set of properties as well as to a given abstraction level,
but there is by now no technology that applies to all
the properties and possible abstraction levels. We hold
the idea that we must use and combine several tech-
nologies so that we may cover more properties at the
lowest possible cost. Assembling all results make pos-
sible to refine the results gained by the use of one tech-
nology. Again, combining different technologies may
also in some case speed up the analysis too.

However, developing a formal debugging plat-
form where you can combine static analysis based on
model checking, property inference, abstract interpre-
tation as well as second order analysis is new.

3.2 The technological challenges
Currently for each formal verification techniques a
representation is tailored for the given application.
Since precision and efficiency of the analysis heavily
rely on the program or system representation, design-
ers define the best suited one for the given technique.



The first identified drawback is that when com-
bining more than one formal verification technique,
complex utilities must convert one representation into
another one. Such conversions introduce a lot of work
and may sometimes introduce loss of information.

The second identified drawback is that since there
is no common representation for system and proper-
ties extracted from it as well as properties that it must
verify, it is quite difficult to combine analyses that rely
on different techniques. In most of applications, the
analyses are conducted in parallel and their results are
combined. However, there are no interaction between
the analyses and no mutual-overcrossing which may
lead in a much more precise results for each analysis.

The third identified drawback is : since in the “de-
bug as design” approach the debug/verification pro-
cess works all along the development stage, the incre-
mental debug and verification results should be pre-
served and combined with the results obtains after the
instantiation or the addition of components to the ar-
chitecture, that meansthe formalism used to express
the system to be analyzed should be the same that the
formalism used to express the results of the analysis.

Consequently, a unified representation must sup-
port (1) mixing different abstraction levels and must
support refinement ; (2) mixing specifications and
code, it must also support mixing extracted properties
and code ; (3) program code or hardware description
and must also support a representation of program ex-
ecution or system simulation ; (4) assembling modu-
lar and parametrized components ; (5) finally allowing
to mix hardware and software designs since there are
an important and growing clas of co-designs in which
hardware and software are tightly coupled.

3.2.1 1st: same structure for codes, properties and data

To implement a formal debugger for system architec-
ture – this approach can also be used to implement
formal debuggers in general – we propose an unified
representation based on a well-known structure called
hypergraph. Starting from this structure we extend it
to a more advanced structure that we decided to call
recursive or fractal hypergraph. Hypergraphs are a
mathematical extension of graphs : a graph whose hy-
peredges may connect two or more vertices. How-
ever undirected structures are of little use for mod-
elling program execution of system behaviors. We are
mostly interested in directed hypergraphs.

Definition 1 (Directed hypergraph) A directed hy-
pergraphH can be defined as a pair(V ,E ) where
V is a set of vertices andE is a set of directed hy-
peredges. Each hyperedgee is a pair of two set of
vertices:E = {({uin, vin, . . .}×{uout, vout, . . .}) ∈ (2V ×2V )}

Directed edges of a graph modelize a possible
transition between an initial state and a final state. Di-
rected hyperedges of a hypergraph modelize one or
more transition connecting a set of initial states to a set
of final states. Thus, the hyperedges denote any sys-
tem that connects a given set of initial states to a set of
final states. An interesting subset are the systems that
can also be represented using a graph. For instance,
automata’s and other graph based representation like
petri nets define a transition system that maps a set of
initial states to a set of final states. They could be ab-
stracted by a hyperedge that maps the initial states to
the final states. We would like to generalize this no-
tion to hypergraphs, restricting the hyperedges to hy-
pergraphs. To quickly summarize, fractal hypergraphs
are hypergraphs where the hyperedges between the
vertices are defined by hypergraphs too.

Definition 2 (Basic fractal hypergraph) A basic
fractal hypergraphH B is defined as :

• a set of verticesV ,

• a set of sub-fractal hypergraphs
H = (hi = (Vi, Hi, inVi, out

Vi, in∂i, out∂i, inEi, out
Ei, Ei))i∈I

• a set of edgesinE - ie. a binary relation
inE ∈ ℘(V ×(

⋃
i
inVi)) - each edge connects a vertex

v ∈ V to an entry vertexinvn ∈ inVn of the sub-
fractal hypergraphhn,

• a set of edgesoutE - ie. a binary relation
outE ∈ ℘((

⋃
i
outVi) × V ) - each edge connects an

exit vertexoutvn ∈ outVn of the sub-fractal hyper-
graphhn to an vertexv ∈ V ,

• a set of edgesE - ie. a binary relationE ∈ ℘(V ×V )

- each edge connects a vertexvo to another onevd

Definition 3 (Fractal hypergraph) A fractal hyper-
graph is defined as:

• basic fractal hypergraphH B = (V , H , inE , out
E , E )

• a set of entry verticesinV , a set of exit verticesoutV ,
• a set of entry edgesin∂ – ie. a binary relation

in∂ ∈ ℘(inV × V ) that connects the entry vertices
inV to vertices of the basic fractal hypergraphV

• a set of entry edgesout∂ – ie. a binary relation
out∂ ∈ ℘(outV × V ) connecting the entry vertices
inV to vertices of the basic fractal hypergraphV

Fractal hypergraphsare a kind of powerful ex-
tension of hierarchical graphs[17] and can represent
program code, hardware design or logical formulae.

Sincefractal hypergraphsare hypergraphs where
the hyperedges between the vertices are defined by hy-
pergraphs, a fractal hypergraph can easily represent a
complex system that mixes program code, hardware
design and logical formulae, each hyperedge of the
hypergraph may be either a fractal hypergraph that



represent a sequence of instructions (program repre-
sentation), a sequence of logical operations (hardware
representation), a logical formulae (specifications) or
a complex subsystem that mixes the previous notions.

3.2.2 2nd step: reducing the size of memory

Standard approach for abstract debugging associates
for each instruction point the values stored in the en-
vironment, which makes the memory size required
explode, and it will result in developing a tool that
can only be used to formally execute debug small se-
quence of codes. To avoid it, we decided to associate
for each value the ”hypervertice” where the value is
first valid and the first one where this value isn’t.

4 A small example
In this section, we will quickly explain how the for-
mal debugger works and what kind of results we can
expect. We consider the following SystemC1 imple-
mentation of a small counter.

SC_MODULE(counter) {
sc_in<bool> clock, load, clear;
sc_in<sc_int<8> > din;
sc_out<sc_int<8> > dout;
sc_int<8> countval;

SC_CTOR(counter) {
SC_METHOD(onetwothree);
sensitive_pos(clock);

}
void onetwothree() {
if(clear)
countval = 0;

else if(load)
countval = din.read();

else countval ++;
dout = countval;
}

};

The code first introduces the input signals:
clock is the internal clock,load indicates that
the counter should load the value fromdin, clear
indicates that the counter should restart to count
from 0. The output signaldout exports the
counter value. The internal registercountval con-
tains the internal value of the counter. The con-
structorSC CTOR(counter) tells that the method
onetwothree is triggered when the clock goes
from 0 to 1. Finally the methodonetwothree im-
plements the logical operations that updates the inter-
nal of the counter and sets the output valuedout.

As as designer, we’d like to verify that the method
onetwothree does the right job. Thus, we’d like to
extract the logical formulae associated to the method.

1SystemC is a set of classes and constructions that allow to
modelize hardware systems in C++

if(clear)

valcount =0

countval =

din.read();

if(load)

countval++

void onetwothree()

clear.valueIf

load.valueIfIf

c
a c

b

g
a g

b

if(clear)

clear.valueIf

Clock [0..1] Clear [0..1]

[< ] 0 [> ] 1

[> ] 1 [> ] 0

[< ] [0..1]

A

Figure 1: Hypergraphs and formal execution of the
methodonetwothree

The system first compiles the method into the
fractal hypergraph presented in figure 1. Once it has
been generated from the code, the symbolic execution
on the fractal hypergraph can be started.

The second part of figure 1 illustrates the values
inferred during symbolic execution of the first condi-
tion. For instance, we can see that theclock signal
is 0 before theonetwothreemethod is triggered,1
after theonetwothreemethod is triggered.

Depending on the result of the comparison, the
symbolic execution deduces the various values that
the signalclear has with respect to the resulting
branch of the test. In the same way, the symbolic exe-
cution deduces the various values for the signalload
has with respect to the resulting branch of the test.

The next step consists in adding counters to the
hyperedges. A counter counts the number of time that
an hyperedge has been activated. This approach has
been introduced in abstract interpretation the number
of times a loop is executed. Once the symbolic execu-
tion terminated, the formal debugger introduces coun-
ters that count the number of time a vertice has been
activated. We concentrate for our example to the ver-
tices that are active after the test. We call(ca, cb) the
counters that are associated to vertices that are active
at the end of the second testif(clear) and(γa, γb)
the counters that are associated to vertices that are ac-
tive at the end of the first testif(load).

Once the abstract debugger has introduced the
counters, we can now infer using standard abstract in-
terpretation techniques [15] [14] the following prop-



erties when exiting the method:
• ca ∈ [0..1], cb ∈ [0..1]

• γa ∈ [0..1], γb ∈ [0..1]

• ca = clear, ca + cb = 1, γa + γb = cb

• din.value = v

•
valcount = va when entering the method

(va + 1)cb + vγa when exiting the method.

For the formal debugging of this simple example,
we haved used: (1) symbolic execution and (2) ab-
stract interpretation to infer value ranges[15], rela-
tional equalities [14] and execution counters [16].

5 Ongoing works
Our approach allows to define platforms with many
communicating tools. The tool under implementation
is based on an automatic analyzer of hardware compo-
nents written in SystemC at many modeling levels and
an automatic assembler of analyzer results through a
project manager and a formal debugger.

As you can imagine, the automatic verification of
a system or a component whose all components and
system behaviors are not specified generates many
warnings and potential errors. To debug the compo-
nents, the user first connects additional “contract com-
ponents” to send generic stimuli that adheres to the
protocol supported by the component. After connect-
ing the “contract components” to the system, the de-
bugger generates the hypergraph that implements the
protocol introduced by the additional “contract com-
ponents”. Then the user should look at each residual
errors or potential violations to determine their origin:
(1) if the error is a real hard one, it has to be corrected;
(2) if the error is not an error per se but a state that
should never occur, by clicking with the right button
of the mouse on the code under each potential error,
the user can choose first to exclude all the behaviors
that may lead to this error, what automatically adds
constraints that complements the previous “contract
components” and refines the protocols supported by
the current analysed system.
To decide what to do with each error, the formal de-
bugger should assist the user to determine its cause.
First, he can browse the trace simulation by simple
clicking on the source simulation code and by on need
instantiation of some signals or registers or variables.
On each point of such a trace, the user can emit re-
quests like ”what is the value of that variable at this
point expressed in constant, interval or hypergraph”,
”from what signals depends the value of that vari-
able/register at this point”. This interactive approach
has been successfully tested for small hardware com-
ponents and allows to find some errors that could not

have been found with other standard verification tech-
niques, inclusive model checking.

6 Future works
Along the ongoing implementation of the platform,
we now investigate how to generate, starting from the
specifications that get verified and extracted during
the analysis of the transactional model of system ar-
chitecture, a set of tests that the RTL level compo-
nents of the architecture must pass to ensure that they
correctly implements the system level architecture.

References:
[1] SystemC[online]. Available: http://www.systemc.org
[2] SpecC[online]. Available: http://www.spec.org
[3] F. Hague, J. Michelson, K. Khan. The art of verification with Vera.

Verification central, 2001
[4] S. Palnitkar, Design Verification with e,Prentice Hall, 2003
[5] C. Norris Ip, S. Swan A Tutorial Introduction on the New SystemC

Verification Standard,in Proceedings of DATE03, IEEE Computer
Society, March 2003

[6] P. Chauhan, E.M. Clarke, Y. Lu, D. Wang, Verifying IP-core based
on system-on-chip design.In proceedings of ASIC conference,
IEEE 1999

[7] B. Bentley, Validating the intel Pentium 4 microprocessor. In Pro-
ceedings of DAC 2001, ACM 2001

[8] RNTL[online]. Available : www.telecom.gouv.fr/rntl/
[9] M.Behm, J. Ludden, Y.Lichtenstein, M. Rimon, and M. Vinov, In-

dustrial Experience with Test Generation Languages for Processor
Verification. In Proceedings of DAC 2004. ACM, San Diego, Cali-
fornia, June 7-11 2004, 36-40

[10] L. Cai, D. GajskiTransaction Level Modeling: an overviewIn Pro-
ceedings of the CODES+ISSS03, ACM Newport Beach, October
1-3, 2003 ACM, 2003.

[11] T. Schubert High level formal verification of next-generation mi-
croprocessors.In Proceedings of DAC 2003. ACM, June 2-6 2003.

[12] R. Kaivola, N. Narasimhan. Formal Verification of the Pentium
4 Floating-Point Multiplier In Proceedings of DATE 2002. IEEE
Computer Society, March 4-8 2002, 20

[13] M. Kaufmann, P. Manolios, and J. Strother Moore, Computer-
Aided Reasoning: An Approach,Kluwer Academic Publishers,
June, 2000. (ISBN 0-7923-7744-3)

[14] M. Karr. Affine relationships among variables of a program Acta
Informatica, 6:133–151, 1976

[15] P. Cousot, N. Halbwachs Automatic discovery of linear restraints
among variables of a programIn : Conference Record of the Fifth
Annual ACM SIGPLANSIGACT Symposium on Principles of Pro-
gramming Languages, Tucson, Arizona, 1978. pp. 84-97. - ACM
Press, New York, New York, United States

[16] A. Venet. Automatic Determination of Communication Topologies
in Mobile Systems.In : Proceedings of the Fifth International
Symposium on Static Analysis, SAS ’98, edited by G. Levi, pp.152-
167. - Springer, Berlin, Germany, 1998, Pisa, Italy, 14-16 septem-
ber 1998, Lecture Notes in Computer Science 1503.

[17] F. Drewes, B. Hoffmann, and D. Plump. Hierarchical graph trans-
formation. in Proc. Foundations of Software Science and Com-
putation Structures (FOSSACS 2000), Lecture Notes in Computer
Science, Vol. 1784, pp. 98113, Springer-Verlag, New York/Berlin,
2000.

[18] F. Bourdoncle. Abstract debugging of higher-order imperative lan-
guages.In : PLDI ’93, Proceedings of the ACM SIGPLAN 1993
conference on Programming language design and implementation,
Albuquerque, New Mexico, 1993. pp. 46–55.


